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Background. The quantification of tumor heterogeneity with molecular images, by analyzing the local or global variation in
the spatial arrangements of pixel intensity with texture analysis, possesses a great clinical potential for treatment planning and
prognosis. To address the lack of available software for computing the tumor heterogeneity on the public domain, we develop a
software package, namely, Chang-Gung Image Texture Analysis (CGITA) toolbox, and provide it to the research community as a
free, open-source project. Methods. With a user-friendly graphical interface, CGITA provides users with an easy way to compute
more than seventy heterogeneity indices. To test and demonstrate the usefulness of CGITA, we used a small cohort of eighteen
locally advanced oral cavity (ORC) cancer patients treated with definitive radiotherapies. Results. In our case study of ORC data,
we found that more than ten of the current implemented heterogeneity indices outperformed SUVmean for outcome prediction in
the ROC analysis with a higher area under curve (AUC). Heterogeneity indices provide a better area under the curve up to 0.9
than the SUVmean and TLG (0.6 and 0.52, resp.). Conclusions. CGITA is a free and open-source software package to quantify tumor
heterogeneity from molecular images. CGITA is available for free for academic use at http://code.google.com/p/cgita.

1. Background

Molecular imaging has become a significant component of
patient management in clinical oncology. The importance
of extracting quantitative measurements from molecular
images has been widely embraced. Recently, there is an
increasing interest to quantify the “tumor heterogeneity”
from molecular images, especially, PET, as the tumor het-
erogeneity is an important biomarker for aggressiveness and
disease outcome [1–3]. The computation of tumor hetero-
geneity can be related to texture analysis that refers to

numerous mathematical methods to compute quantitative
textural features from 2D or 3D images based on the spatial
variation of pixel intensity. To properly address the nature of
quantification goals of this study, we use the term “hetero-
geneity index” to denote the calculated tumor heterogeneity
in a numerical form. Although there is an emerging enthu-
siasm in quantification of tumor heterogeneity [4–13], such
techniques remain to be evaluated and tested for clinical
applications [13].

One existing challenge for investigators interested in
testing the usefulness of heterogeneity indices lies in the
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lack of software available on the public domain. Because
texture analysis is a relatively new concept for PET and
nuclearmedicine community,most software packages offered
by vendors do not include functions for such analysis.
Commercial third-party software also lacks these functions
in general. To address these challenges, we implemented a
software package for computing tumor heterogeneity indices
and share it with the research community of molecular
imaging. This report aims to describe this open-source
project of our software package, namely, Chang-Gung Image
Texture Analysis (CGITA) toolbox, for quantifying tumor
heterogeneity.We will describe its implementation, data flow,
and currently supported functions. To evaluate the usefulness
of CGITA, we used a cohort of eighteen advanced oral
cavity (ORC) cancer patients that were treated with definitive
radiotherapy to demonstrate the use of tumor heterogeneity
as a biomarker of prognosis assisted by CGITA.

2. Methods and Materials

2.1. Tumor-Wise and Voxel-Wise Heterogeneity Quantification.
The calculation of tumor heterogeneity is implemented in
CGITA with two different levels: tumor-wise and voxel-wise
heterogeneity. For the former level that generates heterogene-
ity indices based on the whole delineated tumor, we used the
same processing scheme described by Tixier et al. [10]. In
brief, a tumor or target volume of tissue is first delineated
from the image volume either manually or with automatic
segmentation. The intensities of delineated voxels are then
redigitized and carried into the mathematical transformation
to compute the heterogeneity indices.The second level, on the
other hand, computes the heterogeneity indices on a voxel-
wise basis. The intensities of surrounding voxels around a
specific voxel are used to calculate the heterogeneity indices
for this voxel. By repeating the same computation for each
voxel, a parametric map can be formed to represent the
heterogeneity distribution.

2.2. Implementation of CGITA. CGITA was implemented
in MATLAB (version 2012a, MathWorks Inc., Natick, MA,
USA). It is now distributed over the Internet as an open-
source project with two forms of program distribution. For
users with aMATLAB license, theMATLAB codes of CGITA
are available for them to download, use, and even modify.
CGITA is supported and tested on the Windows and Linux
platforms. For users without a MATLAB license, a stand-
alone CGITA executable is available, although this version
does not support the user-defined functions in general. All
CGITA functions were implemented in native MATLAB
without using compiled C++ functions or MEX files so
that cross-platform support can be maximized. The only
exception is the dependence of some executable functions in
DCMTK [14] on DICOM query and retrieval.

2.3. Tumor Delineation. CGITA allows two types of tumor
delineation. First, CGITA accepts the volume of interest
(VOI) saved as DICOM-RT structures or the VOI drawn
and saved with PMOD (PMOD Technologies Ltd, Zurich,

Switzerland). Second, the user may use our semiautomatic
segmentation functions to delineate the tumor. Currently,
the built-in segmentation in CGITA includes a threshold-
based region-growing method and a fuzzy C-means method.
CGITA allows users to add new segmentation methods as
well.

2.4. Computational Methods for Whole-Tumor Heterogeneity
Indices. We begin by defining what a “heterogeneity index”
is. Since the term “heterogeneity” is a general description of
mixed composition within an object, there is not a single
or specific mathematical definition of heterogeneity. This is
why we chose to use the term “heterogeneity index.” Each
heterogeneity index indicates the degree of heterogeneity.
However, the exact way for computing its value varies from
index to index. From the texture analysis point of view, each
heterogeneity index is represented by a “textural feature.”
We use the term “heterogeneity index” instead of “textural
feature” to specifically describe the biological parameter of a
tumor that we wish to quantify.

The computation of tumor heterogeneity indices is per-
formed in two steps: the computation of a “parent” matrix
and the parameter extraction from this parent matrix. The
“parent matrix” refers to a matrix obtained by a numerical
transformation that accounts for the spatial arrangement,
intensity, and relationship of the voxels contained within
the VOI. We have implemented the four parent matrices
described in the study by Tixier et al. [10]. We also included
an additional four parent matrices: the texture spectrum
matrix [15], texture feature codingmatrix [16], texture feature
coding cooccurrence matrix [16, 17], and neighborhood
gray-level dependence matrix [18]. For each of those eight
parent matrices, a variable number of heterogeneity indices
are calculated. Table 1 summarizes the currently supported
indices in CGITA and their references. At present, there are
a total of 72 heterogeneity indices included in CGITA. These
heterogeneity indices, in brief, all point to the degree of spatial
nonuniformity that directly correlates with tumor hetero-
geneity in tracer uptake. The difference between individual
indices lies in the mathematical computation. For example,
the indices computedwith voxel-alignmentmatrix are related
to the length of “run,” which is defined as the length of voxels
aligned on a line that have the same pixel intensity. Among
those indices, for example, the heterogeneity index “long-
run emphasis” puts a stronger weighting on the intensities of
voxels with long runs. Such an index can be used to measure
the tumor heterogeneity by examining the voxels that have
the similar tracer uptake and align along the same line.

Some conventional image-derived indices, such as
SUVmean, SUVmax, SULpeak [23], and total lesion glycolysis
(TLG), are included in these indices based on literatures [10].

2.5. Software Validation. The software validation is per-
formed in two different levels. First, we validate the computa-
tion of heterogeneity indices against other software packages.
Since we do not have access to other in-house software
packages for computing the tumor heterogeneity, we are
only able to validate some of the conventional indices such
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Table 1: Summary of the currently supported heterogeneity indices of CGITA.

Parent matrix Feature measure

Cooccurrence matrix [17] Second angular moment, contrast, entropy, homogeneity, dissimilarity, inverse
difference moment

Voxel-alignment matrix [19]

Short-run emphasis, long-run emphasis, intensity variability, run-length variability,
run percentage, low-intensity run emphasis, high-intensity run emphasis,
low-intensity short-run emphasis, high-intensity short-run emphasis, low-intensity
long-run emphasis, high-intensity long-run emphasis

Neighborhood intensity difference matrix [20] Coarseness, contrast, busyness, complexity, strength

Intensity size-zone matrix [21]

Short-zone emphasis, large-zone emphasis, intensity variability, size-zone
variability, zone percentage, low-intensity zone emphasis, high-intensity zone
emphasis, low-intensity short-zone emphasis, high-intensity short-zone emphasis,
low-intensity large-zone emphasis, high-intensity large-zone emphasis

Normalized cooccurrence matrix [17] Second angular moment, contrast, entropy, homogeneity, inverse difference
moment, dissimilarity, correlation

Voxel statistics
Minimum SUV, maximum SUV, mean SUV, SUV variance, SUV SD, SUV skewness,
SUV kurtosis, SUV skewness (bias corrected), SUV kurtosis (bias corrected), TLG,
tumor volume, entropy, SULpeak

Texture spectrum [15] Max spectrum, Black-white symmetry
Texture feature coding [16] Coarseness, homogeneity, mean convergence

Texture feature coding cooccurrence matrix [16] Second angular moment, contrast, entropy, homogeneity, intensity, inverse
difference moment, correlation, variance, code similarity

Neighborhood gray-level dependence [22] Small-number emphasis, large-number emphasis, number nonuniformity, second
moment, entropy

as SUVmean and TLG against commercial software PMOD.
Tested with clinical PET images, CGITA is able to obtain
nearly identical results as PMOD for SUVmean and TLG. The
second level of software validation is the software reliability
after each update and revision. In order to ensure the
software quality, each time a function is added or modified,
a set of clinical PET images and its corresponding VOI are
kept internally for testing CGITA. Computed heterogeneity
indices are generated and compared to historical results, in
order to check if the computation remains consistent after
software update.

2.6. Parametric Imaging. For a given image volume, the para-
metric image of heterogeneity indices is computed by looping
through every voxel and repeating the following steps for each
voxel. The user must first choose how many voxels should
be used to calculate the parametric image. For example, the
user may elect to use a 3 × 3 × 3 cube centered at a specific
voxel.The choice of cube sizewould affect the sharpness of the
resulted heterogeneity parametric images. A larger cube size
includes more voxels for analysis, potentially improving the
heterogeneity accuracy but decreasing the spatial resolution.
For a 3 × 3 × 3 cube, the intensities of those twenty-seven
voxels are then treated as a delineated volume that is carried
into the computation of heterogeneity indices as described
in the previous sections. As a result, a heterogeneity index
will be computed for the specified heterogeneity index at this
given voxel. By looping through all of the voxels, except for
those on the edges, a parametric image volume can be formed
with the voxel-wise heterogeneity indices.

2.7. Evaluation of Heterogeneity Indices for Outcome Pre-
diction in Oral Cavity Cancer Patients. We evaluated the
heterogeneity indices implemented in CGITA with patient
data from a cohort of ORC patients treated with definitive
radiotherapy. These patients are a subgroup of a prospective
dose-painting trial, approved by the Institutional Review
Board of Chang-Gung Memorial Hospital. This study was
conducted in the Linkou and Keelong branches of Chang-
Gung Memorial Hospital, from January 2008 to December
2009. A total of 38 nonmetastatic, stage IV ORC patients
who were ineligible for radical surgery were included.
Informed consent was obtained from every participating
subject. Simultaneous integrated boost, intensity-modulated
radiation therapy (SIB-IMRT) was used to escalate the irradi-
ation dose within gross tumor volumes to test the treatment
efficacy and toxicity. For the quantitative analysis of tumor
heterogeneity, we retrieved a uniform treatment group (𝑛 =
18) who received neoadjuvant chemotherapy followed by
concurrent chemoradiation. The group was comprised of 17
males (94.4%) and one female (5.6%), with a median age of
54.2 years (range: 35.9–73.4 years) and amean age of 53±10.5
years. Most patients had the habits of smoking (𝑛 = 14,
77.8%), drinking (𝑛 = 16, 88.9%), and betel-quid chewing
(𝑛 = 16, 88.9%). The preliminary observation was completed
in June 2012, and the median follow-up times for all patients
were 19.3 months (range: 4.3–50.7) and 38.1 months (range:
30.1–50.7) for survivors. A successful outcome was defined
as a state free of disease progression for at least 30 months.
Eighteen patientswere ultimately classified into the successful
group (𝑛 = 9) and the failed group (𝑛 = 9). In the successful
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Figure 1: A screen shot of the CGITA program. The CGITA GUI provides users with a simple image display interface that allows users to
examine different slices and views.The computation of heterogeneity indices is achieved simply by button clicking. As an open-source project,
the current functions and interfaces of CGITA can be customized by users familiar withMATLAB programming.The screen shot here shows
a subject with the FDG-PET images fused over CT images.

group, 8 lived without evidence of recurrence, but one died
of nondisease-related causes at 16 months after completion of
treatment. All other deceased patients died of disease-related
events. The pretreatment PET images of all eighteen subjects
were used for image analysis.

Each patient in our cohort received a pretreatment FDG-
PET/CT scan for staging. Those pretreatment PET/CT scans
provided the image sets with which we tested the texture
analysis. Fifty minutes after the 370-MBq FDG injection, a
whole-body static PET emission scan was acquired on a GE
Discovery ST 16 PET/CT (GE Healthcare, Milwaukee, WI)
[24] from the skull base to the mid-thigh, with three minutes
per bed position. Images were reconstructed with OSEM
(ten subsets, four iterations) with pixel spacing of 4.7mm
and 3.3mm in the transverse and axial directions, respec-
tively. Quantification of the tumor heterogeneity with PET
images was performed as follows. First, the tumor contour is
delineated by a board-certified nuclear physician in PMOD
with a scheme similar to that of the previously reported
head and neck tumor delineation [25]. We elected to draw
the VOI semiautomatically, since automatic segmentation in
ORC patients is generally difficult because some surrounding
oral tissues are benign but show a high FDG uptake. After
the lesion was first manually outlined from the fused PET/CT
images by the nuclear physician, this outlined lesion area
was then reviewed to remove benign tissues with high FDG
uptake. Once the lesion was outlined, an SUV value of 2.5 was
used to delineate the outer contour of the main tumor. Image
intensities of the delineated voxels are then used to calculate
heterogeneity indices and saved for each patient. Parametric
images of heterogeneity indices were calculated for selected
subjects.

2.8. Performance Evaluation. After the tumor-wise hetero-
geneity indices were calculated for every subject, the subjects
were divided into two groups based on their outcome, with
𝑛 = 9 in each group. A receiver operative characteristics
(ROC) curve was plotted for each heterogeneity index inde-
pendently. We calculated the area under the curve (AUC)
from the ROC curves and the optimal sensitivity/specificity
for each index. In addition, a Kruskal-Wallis test was per-
formed for each index to evaluate the performance of these
metrics [26]. The AUC and the 𝑃 value of the Kruskal-Wallis
test calculated from the average intratumor SUV (SUVmean)
were compared to the AUC and 𝑃 value calculated from each
of the other indices.

3. Results

The appearance of CGITA is shown with a screen shot in
Figure 1. Through a graphical user interface (GUI), CGITA’s
image display interface can be used to view the images and
confirm whether the imported VOI aligns properly with
the target tissue after importing images and VOIs. Table 2
summarizes the currently implemented heterogeneity indices
in CGITA. The calculated indices, currently totaling 72,
can be exported as spreadsheets. In addition to processing
one subject at a time using the CGITA GUI, the user may
also elect to use the batch mode by processing all subjects
automatically without the user input. We tested the batch
function on our ORC patient data. On average, each subject
takes approximately 30 seconds to process, including image
importation and the computation of all 72 features. CGITA
is currently hosted at http://code.google.com/p/cgita with

http://code.google.com/p/cgita
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Table 2: Summary of the software features of CGITA.

Feature CGITA implementation
Programming environment MATLAB (MathWorks Inc.)
License Free for academic use
Source code availability Open source
Supported image format DICOM (either local files or direct access to a PACS server for image retrieval)
Supported VOI format DICOM-RT, PMOD
Currently supported textural features 72

Other features
(i) Parametric imaging of heterogeneity indices
(ii) Batch mode for processing a large cohort
(iii) Compiled stand-alone application available
(iv) Supporting user-defined functions for heterogeneity calculation

Table 3: Comparison of AUC, specificity, and sensitivity of heterogeneity indices vs. SUVmean and TLG.

Parent Feature AUC Sensitivity (%) Specificity (%) 𝑃 value†

Intensity-size-zone Low-intensity
short-zone emphasis 0.90∗ 77.8 88.9 0.004

Intensity-size-zone Short-zone emphasis 0.81∗ 77.8 66.7 0.024
Texture Feature Coding Cooccurrence Contrast 0.72 55.6 88.9 0.085

Intensity-size-zone High-intensity zone
emphasis 0.70 66.7 77.8 0.145

Intensity-size-zone Zone percentage 0.70 55.6 88.9 0.122
SUV statistics Entropy 0.70 66.7 77.8 0.145
SUV statistics Mean SUV 0.60 66.7 66.7 0.453
SUV statistics Maximum SUV 0.57 66.7 66.7 0.627
SUV statistics TLG 0.52 55.6 66.7 0.895
∗denotes that the 𝑃 value is less than 0.05 given the null hypothesis of AUC <0.5.
†calculated using the Kruskal-Wallis test (19 indices have a 𝑃 value greater than 0.453).

both the source code and executables available for download.
There is also a user manual for CGITA available at its website.
Academic research uses are free of charge. As the hosting
service also provides a version control system, users may
also participate in this open-source project as developers to
contribute new functions to CGITA.

The usefulness of heterogeneity quantification was eval-
uated with our ORC patient cohort. In terms of outcome
prediction, the AUC from ROC analysis was calculated for
each heterogeneity index, as was the 𝑃 value for the Kruskal-
Wallis test. Out of the total 72 textural features implemented
in CGITA, we found that 13 textural features have a higher
AUC and 19 have a lower 𝑃 value than the SUVmean. The
heterogeneity indices with the highest AUC are summarized
in Table 3 and compared to conventional markers such as
SUVmean and TLG.The conventionalmarkers did not provide
satisfactory discriminative power with low AUC (0.6 for
SUVmean and 0.52 for TLG) and high 𝑃 value under the
Kruskal-Wallis test. On the other hand, some heterogeneity
indices stood out as better indicators for prognosis under the
current tests. Two indices computed from the intensity-size-
zone matrix (ISZ) [21], low-intensity short-zone emphasis
(ISZ-LISZE), and short-zone emphasis (ISZ-SZE) showed
high AUC (0.9 and 0.81, resp.) and low 𝑃 values (0.004 and
0.024, resp.). Compared to the SUVmean, LISZE improved

the sensitivity and specificity by 11% and 22%, respectively.
Including ISZ-LISZE and ISZ-SZE, six indices computed
from the intensity-size-zone matrix provided an AUC over
0.7. The ROC curves of ISZ-LISZE and ISZ-SZE are plotted
in Figure 2 along with the ROC curves of SUVmean and
TLG. Parametric images based on the textural features of
one subject are shown in Figure 3, illustrating a pattern
not in the original PET images. Visual inspection revealed
that parametric images formed with different heterogeneity
indices exhibit various textural patterns.

4. Discussion

Thesearch for image-based biomarkers remains an important
but challenging aspect of clinical cancer imaging. As imaging
technology continues to improve, information extraction
from the reconstructed images becomes very important in
maximizing the benefit of imaging studies. Recently, the
term “radiomics” is proposed to describe the concept of
integrating the information extracted from medical images
into the proteogenomic and phenotypic information [7, 8]. It
is apparent that, for such applications, conventional indices
like SUV may not provide sufficient information. Advanced
image analysis and information extraction methods become
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Figure 2: ROC curves of the heterogeneity indices, comparing two
of the indices to the conventional metrics.The heterogeneity indices
show a higher discriminative power than SUVmean and TLG.

an inevitable component for the concept of radiomics, in
order to maximize the amount of information that can be
extracted from medical images. Quantification of tumor
heterogeneity with texture analysis has been regarded as a
promising field by several recent review articles [7, 8, 11,
13]. Recent reports have shown the application of tumor
heterogeneity measured with textural features in nonsmall
cell lung cancer [4], nasopharyngeal carcinoma [5], cervical
cancer [6], peripheral nerve sheath tumors [9], gastroin-
testinal stromal tumors [12], and esophageal squamous cell
carcinoma [27] based on FDG-PET images. Heterogeneity
analysis has also been applied to themolecular image analysis
of data from animal studies [28–30].

Although texture analysis may be a useful tool to quantify
tumor heterogeneity from images, many questions require
answers before this concept becomes a clinical standard. The
first question arises from the signal and contrast source for
different imaging methods. For example, FDG-PET reflects
the glucose metabolism of tissues. A tumor that is spatially
heterogeneous in cell proliferation may not appear hetero-
geneous in FDG-PET images, even with perfect resolution,
as glucose metabolism may not be directly correlated to the
proliferation. On the other hand, the properties of an imaging
modality are also critical to texture analysis. The spatial
resolution and signal-to-noise ratio (SNR) will both affect
the performance of texture analysis. Low spatial resolution
degrades the heterogeneity displayed on the acquired image,
while high noise will cause a natively homogeneous image
to show a high variation in pixel intensity. As a result, the
results from texture analysis obtained from clinical PET
images should be carefully interpreted and evaluated due
to the resolution and noise limitations of PET. Researchers,
who believe in the usefulness of quantification for tumor

heterogeneity, should take on the responsibility of providing
the imaging community with evidence-based studies.

As heterogeneity quantification or texture analysis with
molecular images is still a relatively new technology,
especially for nuclear medicine community, a free and
open-source software package can become a key component
for the success of such emerging technologies. Without it,
investigators wishing to evaluate heterogeneity indices must
develop in-house software, which can be time-consuming
and resource limited. A free software package can therefore
attract more investigators and allow them to test such new
quantification methods on their data with a minimum effort
and cost. The other important software characteristic that
is much desired is the availability of the source codes to
the users. Such efforts for open-source projects in medical
imaging have been undertaken by many groups, producing
tools such as the kinetic modeling software COMKAT [31,
32] and radiation therapy software CERR [33]. An open-
source project has many benefits. It allows the source code
to be examined for programming errors. Users with pro-
gramming abilities may contribute to new functionalities.
Most importantly, once the source code is agreed upon by
most of the developers, such a software package may become
a standardized platform for different groups of researchers
to have a common ground for data comparison. A very
successful model is the Statistical ParametricMapping (SPM)
[34], which has now become the standard software tool
for neuroimaging research as it continues to expand its
functionality and user base. CGITA has a long way to go
before achieving suchmaturity like SPM. But withmore users
and developers being attracted by CGITA, we believe that it
has the potential to become the standard software platform
for studying the tumor heterogeneity with molecular images.
For vendors who wish to develop and test heterogeneity
functions in their commercial software, CGITA may also
serve as a reference for software verification, thereby accel-
erating the research and understanding of quantifying tumor
heterogeneity.

In brief, CGITA has the following features that may
be attractive to different user groups. First, it is easy to
use and has a simple GUI. For users without a MATLAB
license, a compiled stand-alone executable is also provided
on the website. Users without a programming background
can easily apply CGITA to their image data. Second, it is
open source and allows users to create new functions. Third,
it supports more than seventy textural features and its func-
tionalities continue to expand in this regard. Fourth, it has
the unique feature of parametric imaging with heterogeneity
indices. Finally, CGITA can be executed under a batch mode.
The texture analysis of multiple subjects can be performed
automatically without user intervention, which is extremely
helpful for processing a large amount of data, an unavoidable
task for future studies aiming to evaluate the heterogeneity
quantification of molecular images. As a result, we believe
CGITA will serve as a useful and practical tool for molecular
imaging investigators.

A cohort of eighteen ORC patients was used in our study
to test our software and demonstrate the potential application
of heterogeneity indices. Because the cohort size is small, our
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Figure 3: Parametric images of textural features computed from a single patient compared to the original PET image.The PET image, shown
in the top row, is displayed between SUVs of zero and twenty. Heterogeneity indices 1 to 4 represent, respectively, the contrast, dissimilarity,
entropy, and inverse differencemoment calculated from the cooccurrencematrix. Note that the parametric images appear different according
to the spatial variation in voxel intensity. Furthermore, different index images display different tumor heterogeneity patterns.

intention is not to perform a theoretical study for establishing
a standard to stratify advanced ORC patients with textural
features. Instead, this case study is a demonstration of how
a software package for heterogeneity quantification could be
applied to patient data for research purposes. In our report,
we chose the task of using heterogeneity indices for prognosis,
aiming to test whether heterogeneity indices computed with
CGITA might be better discriminators than conventional
metrics, such as SUV. Indeed, the results support the claim
that textural features may be more informative than SUV in
this small-cohort case study. Judging from the ROC analysis,
many of the implemented textural features showed better
AUC than the AUC with SUVmean in outcome prediction
power. Two of these features (ISZ-LISZE, ISZ-SZE) even
improve the AUC from 0.6 to 0.81 and 0.9.The sensitivity and
specificity have also been improved by heterogeneity indices.
Although this study is not aimed to find the theoretical
relationship between the heterogeneity indices and disease
outcome, we may still speculate the reasons behind such
findings. SUV and heterogeneity indices, by nature, represent
different physiological and biological mechanisms. In gen-
eral, SUV represents the “amount” of tracer present in local
areas (e.g. SUVmax) and the whole tumor (SUVmean), while
heterogeneity indices express the “distribution variation” of
tracer activities.Themore heterogeneous a tumor is, themore
likely a tumor is attempting to differentiate and generating
different colonies to survive in its environment, especially
during therapy. This may be the underlying reason that
enables ISZ-LISZE and ISZ-SZE to improve the AUC from
SUVmean because they are capable of capturing the tumor’s
heterogeneity by emphasizing the tumors with many small
“zones,” which is defined as the number of interconnected
voxels with the same voxel intensity. As a result, the quantified
tumor heterogeneitymay serve as a better indicator for tumor
aggressiveness which has a direct impact on patients’ progno-
sis and survival.Thismight explainwhy heterogeneity indices
in general show stronger power for outcome prediction, in
our data as well as in the literature [35–37]. However we
would also like to point out that, because we have a small
patient cohort, the heterogeneity indices that are found with
the best performance need to be further validated with a
larger amount of data. Further validation is necessary in the
future.

The image quality is also an important factor for het-
erogeneity quantification that requires further study and
validation, especially in the spatial resolution and SNR. In
our study, we used a PET camera with a spatial resolution

of about 6mm and system sensitivity of about 0.7% [24].
Current state-of-art cameras could achieve a higher spatial
resolution of about 4mm and system sensitivity of 0.9% [38].
Improvement on the spatial resolution with new cameras and
image SNR by a higher tracer dose undoubtedly will increase
the accuracy for heterogeneity quantification. However, the
minimum requirement of image quality for a specific disease
remains to be further studied. In our study, since the tumor
size is generally large in our cohort with an average volume
of 107mL, a spatial resolution of 6mm is probably sufficient.
Similarly, since the tracer uptake is fairly high with SUVmean
above five, the SNR should not be a concern under the
standard injection dose of 370MBq of FDG. With our
current data, it is not feasible to determine the smallest
tumor or the worst noise level that can still produce accurate
tumor heterogeneity quantification. Such studies may require
animal or phantom studies, in which the injected dose and
image acquisition mode can be more freely modified and
tested. CGITAmay facilitate such testing on the software side.
The exact determination of the spatial resolution and system
sensitivity requirements awaits future investigation.

We are not the first group to propose the parametric imag-
ing of heterogeneity indices. For example, a previous report
has demonstrated such techniques applied to MRI for lesion
segmentation purposes [39]. However, to our knowledge, we
are the first group to implement this function as part of an
open-source project for quantifying the tumor heterogeneity
ofmedical imaging.We tested this functionality in our patient
cohort and were able to obtain heterogeneity parametric
images. Unfortunately, we do not possess in vitro images
of tumor heterogeneity with which our parametric images
are compared because our cohort did not undergo surgical
dissection of the tumor. However, it is still quite interesting
to examine these images, as shown in Figure 3. For example,
in the cooccurrence-contrast images, a hot spot is shown
on the bottom right portion of the tumor, indicating a high
variation in the voxel intensity in this area. It is easy to
see that the hot spots in the original PET images and the
heterogeneity images are quite different in terms of both
size and location. This is reasonable because the parametric
images are calculated based on the heterogeneity indices
and therefore represent the spatial variation of tracer uptake.
Efforts have been reported to use heterogeneity parametric
images for tumor delineation and radiation targeting [40].We
believe such heterogeneity images could do much more than
simply determining the tumor contour. One potential role
for heterogeneity images in particular, we believe, is to serve
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as the guide for dose-boosting techniques for targeting the
radiation dose at themost aggressive areas. Further validation
must be done to verify the relationship between hetero-
geneity images and local aggressiveness of the tumor. This
could be achieved by comparing the heterogeneity images to
the whole-mount pathology or immunohistochemistry data.
Since we do not have appropriate data to study the rela-
tionship between heterogeneity images and the distribution
of aggressive colonies, we hope that CGITA may encourage
investigators who own such data to test this hypothesis for
expanding the use of heterogeneity indices.

We would also like to comment that, although CGITA
is targeted at oncological applications, it can also be applied
in other fields, such as neurology. It is also not limited
to PET, as long as the images are stored in the DICOM
format that CGITA can import. This makes CGITA also
a useful tool for analyzing experimental animal data. We
have tested CGITA with CT and MR images for heterogene-
ity index computation, as shown in Supplemental Figures
1 and 2 (see Supplementary Materials available online at
http://dx.doi.org/10.1155/2014/248505). Quite a few CGITA
features can be further improved in the future for image dis-
play, segmentation, and acceleration for computation. New
texture analysis methods, such as those based on wavelets
[41], will be investigated and added to CGITA in the future.
At this moment, CGITA is solely for research purposes and
shall not be used for clinical diagnosis. Interested developers
are welcome to join the project to advance the functionalities
of CGITA.

5. Conclusion

We present the CGITA software package for quantifying
the tumor heterogeneity with molecular images. As a user-
friendly, open-source program that is free for academic
use, CGITA could assist investigators to apply heterogeneity
analysis to their data. With a pilot cohort of eighteen
advanced ORC patients treated with definitive radiotherapy,
we found that heterogeneity indices may serve as better
prognosis predictors for patient outcome by improving both
the sensitivity and specificity. We believe that CGITA will
facilitate and accelerate our understanding of the usefulness
of heterogeneity quantification and its future clinical role in
patient management. Furthermore, we hope an open-source
software model like CGITA can facilitate the establishment
of clinical standards for heterogeneity analysis in the future
to further expand its clinical use.
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